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Critical behaviour at an edge 

John L Cardy 
Department of Physics, University of California, Santa Barbara, California 93 106, USA 

Received 11 April 1983 

Abstract. The critical behaviour of a magnetic system with O ( N )  spin symmetry, bounded 
by two (d - 1)-dimensional hyperplanes meeting at an angle a, is studied within mean 
field theory and in d = 4 - E  dimensions. New exponents emerge for correlation functions, 
and magnetisation and susceptibilities, for spins close to the edge. They can be expressed 
in terms of known bulk and surface exponents, together with a single new edge exponent, 
which depends, however, on the angle a. This exponent is computed to first order in E .  

1. Introduction 

Consider a homogeneous magnetic system in three dimensions, bounded by planar 
surfaces. In the thermodynamic limit, the total free energy has the decomposition 

F =  Vfb+Afs+Lfe+. . . (1.1) 
where V is the volume, A is the total surface area, L is the total length of the edges, 
and so on. The bulk free energy per unit volume, fb, depends on bulk quantities like 
the temperature and the applied magnetic field. The surface free energy per unit 
area, fs, depends on these quantities, plus any local quantities, such as a magnetic 
field applied at the surface. Likewise, the edge free energy per unit length, fe, depends 
on all the bulk and surface fields together with any fields localised near the edge. In 
addition, as we shall show, fe  depends on the angle a between the two planes defining 
the edge. At the bulk critical point, fb, fs, fe, . . . all exhibit singularities. The critical 
behaviour of surface quantities has been analysed extensively (Binder 1983). The 
various new exponents which arise are related by scaling laws to the bulk exponents, 
and one new independent surface exponent, which is determined by the renormalisa- 
tion group (RG) eigenvalue of the surface magnetic field. In addition, the critical 
exponents determining the behaviour at criticality of the correlation functions between 
spins at the surface and in the bulk are related by scaling laws to surface and bulk 
thermodynamic exponents. 

In this paper we study the critical behaviour of the edge free energy fe, and of 
correlation functions involving spins near the edge, within the framework of mean 
field theory, and the renormalisation group and E expansion. Since the edge free 
energy depends on bulk, surface and edge quantities, one can define a whole new 
genus of critical exponents describing the singular dependence on these quantities. 
However, the renormalisation group predicts scaling laws which relate all these new 
exponents to four basic ones. These are the eigenvalues of temperature, bulk magnetic 
field, surface field, and a new edge field. (Strictly speaking, the scaling fields are linear 
combinations of these fields with others of the same symmetry and extensiveness.) 

@ 1983 The Institute of Physics 3617 
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The edge exponent turns out to be less universal than those of the bulk and the 
surface. For an isotropic system, it depends only on the angle a. This dependence 
is apparent even within mean field theory, where, for example, the correlation function 
between a spin close to the edge and one in the bulk decays as r - (d -2+nz )  at criticality, 
where q2 = w / a .  For spatially anisotropic systems, a non-universal dependence on 
the anisotropy also appears. 

The outline of this paper is as follows. In $ 2  we define the Landau-Ginzburg 
N-vector model within the restricted geometry, and discuss the correlation functions 
within mean field theory, which is applicable for dimension d > 4. In § 3 the one-loop 
correction to the correlation function is evaluated, from which the critical exponent 
7 2  may be determined to O(E) .  The next section contains a complete RG analysis, 
where it is argued that one new edge operator renormalisation constant is required 
to render the theory finite. From this follows the full RG equation, and the scaling 
laws for the edge free energy and the correlation functions. We conclude with a 
summary of our results, and a discussion of further questions and potential applications. 

2. Mean field theory 

In order to simplify the analysis, we consider a wedge-shaped geometry bounded by 
two semi-infinite planes meeting at an angle a. We adopt cylindrical polar coordinates 
(p, 8, z )  where z is, in general, a (d  - 2)-dimensional vector parallel to the edge, and 
0 s 8 sa. We shall refer to p = 0 as an edge, even though for d = 2, for example, it 
is a zero-dimensional corner. We consider a scalar field cp ( r )  with N spin components, 
and the free energy functional 

J v  J s  

where the second term is a surface term, representing the weakening (for c > 0 )  of 
the interaction strength at the surface. For the semi-infinite system Lubensky and 
Rubin (1975a, b) have analysed (2.1) within mean field theory and the renormalisation 
group. For c > 0 (the ordinary transition) the surface orders at the same temperature 
as the bulk. Under the RG, c is driven to a fixed point at +Co. In what follows, we 
shall consider only the ordinary transition, and so shall take c = +W. This forces the 
Dirichlet boundary condition cp = 0 on S, which makes the analysis tractable. 

Within mean field theory, the spin-spin correlation function is proportional to the 
bare propagator GO of the field theory defined by (2.1), satisfying 

(-V2+mi)Go(r, r’)  = g c d ) ( r  - r ’ )  (2.2) 

with m i  = i$-’cc /T - T,l, and G O  satisfying Dirichlet boundary conditions. Taking 
advantage of translation invariance in the d - 2 transverse directions, we may write 

where 

(2.4) 
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The Green function g o  may be expressed in two standard forms: as an eigenfunction 
expansion 

(2.5) 

or more compactly as 
2 "  

go@; p, 8; p ' ,  0 ' )  =- (2.6) 

where we have introduced the notation A = ~ / a ,  = k 2 + [ - ' .  As usual, p> (p<) is 
the greater (lesser) of p and p ' .  From (2.5)-(2.6) we may infer the asymptotic behaviour 
of Go at the critical point t-* = 0, in various limits: 

Z " A ( K ~ < ) K " A ( K ~ > )  sin nA8 sin nA8' 
n = l  

(a) z = zt ,  p fixed, p t  + CO. Using (2.6) and rescaling Ik( = x / p ' ,  

Kd-zp t -d+2 lom x ~ - ~  dx f Z , A ( x p / p ' ) K n A ( ~ )  sin nA8 sin nA8' (2.7) 
2 

Go-- 
a n = l  

where Kd = 2 ~ ~ ' ~ / r ( d / 2 ) ( 2 . r r ) ~ .  In the limit p / p ' +  0 we may approximate In, by its 
form for small argument. We then see that only n = 1 is important in the sum, and 

Go- ( A ( h ) ~ ~ / p ' ~ - ~ + ~  ) sin AB sin AB'.  (2.8) 

This leads us to identify the exponent 772 = A  = ~ / a .  The amplitude 

Although the exponent q2 becomes arbitrarily large as (Y + 0, the amplitude diverges 
in that limit. The limits a + 0 and p ' / p  + CO do not commute. 

(b) p, p '  fixed, Iz -2'1 = r + CO. In this case form (2.5) is more appropriate, rescaling 
k = k/r, /.L = F / r .  Once again only n = 1 is important, and the result is proportional to 

(2.10) 

from which we identify the exponent 7 2 . 2  = 2 ~ / a .  
Other cases may be dealt with similarly. We establish a notation as follows: a 

subscript 2 will refer to edge quantities, and 1 to surface quantities. A subscript 0 is 
implied for bulk quantities, but is not written explicitly. The critical exponent describ- 
ing the critical decay of a correlation function for spins in regions p and q is then 
written q p , q .  In this notation, the surface exponents (Binder and Hohenberg 1972) 
are 77,. = ql and 7711 = 771,1. The mean field results are summarised by 

(2.1 1) 

] sin A B  sin AB' [ ( p p ' ) A l r d - 2 + 2 A  

1 
7 7 P 4  = d 7 7 P , P  + 77q.q 1 
770,o = 77 = 0 (bulk) 

(2.12) 

Note that the edge exponent agrees with the surface exponent for (Y = T ,  as it must. 
The scaling relations (2.11) will be seen to survive below four dimensions (8  4). The 
relation 7711 = 2v1 - q (Lubensky and Rubin 1975a) is a special case. 

We now give examples of the mean field calculation of the edge magnetisation 
and susceptibility exponents. First consider the effect of adding a small bulk magnetic 
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field, h, for T > T,. The local magnetisation cp(r) will satisfy 

-V2q +[-’Q = h 

so that 

Q ( r )  = h I ddr’ Go(r, r ’ )  

(2.13) 

(2.14) 

= h(2/a)  1 p’dp’de’  InA(p</()KnA(p>/() sin nA6 sin nhe’. (2.15) 

The dominant contribution comes from p ’ > p .  The p’  integration then gives a factor 
[’, and for p + 0 we obtain an additional factor (p/OA. Hence the edge susceptibility 
acp,/ah I h = O  behaves like IT - TcI-y2 with y2 = 1 -AI2 = 1 - .rr/2a. 

For T < T,, with h = U, the local magnetisation must be obtained from the nonlinear 
equation 

(2.16) 

with the boundary condition that Q + [-1u01/2 (the bulk value) as p + 03. Although 
(2.13) cannot be solved by simple quadrature (as in the surface case (Binder and 
Hohenberg 1972)), its solution must have the scaling form 

Q W  = e-’~;’/’f(p/t, e) .  (2.17) 

As p + 0 at fixed [, we can ignore the nonlinear term, so that cp must behave like p ’. 
We conclude that for fixed p and [ + 00, Q ( r )  Cc [-”-’ Cc (T,  - T)1/2+A’2 . This gives the 
edge magnetisation exponent p2 = i+.rr/2a. 

Rather than derive the whole list of mean field exponents at this stage, we refer 
the reader to the scaling laws of 9: 4, where the mean field results may be obtained 
by setting d = 4.  

. J  

3 - V 2 q  - [ - 2 Q  + U O Q  = 0 

3. One-loop calculation 

In this section we evaluate the full correlation function G(r, r ‘ )  to first order in U. We 
shall perform the calculation in the massless theory (T  = T,), close to d = 4 .  The 
Feynman diagrams are shown in figure 1. Since the transverse momentum k is 
conserved we may decompose the full G as in (2.3). Then, to one loop, 

(3.1) g ( k ;  P, 0 ;  P I ,  e’ )  = go(k;  P ,  0 ;  p i ,  8 ’ )  +gl(k ;  p, e ;  P ’ ,  e’ )  
where 

When the expressions (2.5) or (2.6) are substituted for go, the arguments of § 2 show 
that only the term proportional to sin A B  is important if p is small. Likewise, it will 
be shown later that we need consider only the term proportional to sin A6’. Within 
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k '  

Figure 1. Diagrams contributing to G(r,  r ' )  at one-loop level. 

the loop, however, all harmonics must be summed over. The 8" integration then 
involves 

2 1 m  dO"sin2 h 8 " z  InA(k'p ' ' )KnA(k'p' ' )  sin2 nhW' 
a 0  n 

(3.3) 

The next step is to carry out the k' integration. This has the form 

lom X d - 3  dX I n k  (X )KnA ( X  (3.4) , , - d+2  I dd-'k ' I n A  (k ' p  ")KnA (k ' p  ") = K d  -2p 

which may be written (Abramowitz and Stegun 1965, Gradshteyn and Ryzhik 1980) 

, , - d+2  T ( d / 2  - 1 + a h ) r ( d / 2  - 1) 2Fl (d /2 -  1 +nA, d / 2 -  1;  nh + 1 ;  1) 
24-dI'(nh + 1) Kd-ZP 

, , -d+Zr(d /2-  1 )T(d /2  - 1 + nh )r(3 - d )  
2 4 - d r ( 2 - d / 2 ) r ( 2 - d / 2 +  n h )  =Kd-Zp  

1 

(1  - t ) 2 - d .  1 dt [ d / 2 - 2 + n A  =- 
2.nd"-' r(2 - d / 2 )  b 

(3 .5)  

(3.6) 

(3.7) 

In this last form the sum over n implied in (3.3) may be carried out. Putting all these 
results together, 

gl - - (N + 2 ) u 0 ( 2 / a ) f ( h ,  d )  sin A8 sin AO' 

x lom p'r3-d dp"I~(kp<)K~(kp,)l~(k~:)K~(kp:) 

where p ,  = max(p, p " )  and p k  = max(p', p " )  and 

(3.8) 

f ( h ,  d )  has a simple pole at d = 2 .  Its residue is independent of a, however, and it is 
cancelled by the bulk mass counterterm. The apparent pole at d = 3 may be shown 
to have zero residue. This is an important consistency check, as there is no counterterm 
available to cancel it. The integral in (3.9) has a simple pole at d = 4, and thus f ( h ,  4) 
is finite. After some algebra, 

(3.10) 

The simplest way to extract the O ( E )  correction to the exponent q 2  is to take uo  
equal to its fixed point value of 8 7 r 2 & / ( N + 8 )  (Wilson and Fisher 1972), evaluate 

f (h ,  4) = - ( 5 A  + 1)/48w2. 
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(3.8) at d =4 ,  and assume that the logarithm exponentiates. A more systematic 
approach will be found in 0 4. The contribution to (3.8) from the regiqn p S p “ S p ’  
is proportional to 

(3.1 1) 

Since, as p”+co,  IA(kp”)KA(kp”)E l /p” ,  but as p ” + O ,  it goes to a constant (1/2A), we 
see that the logarithm comes from the region p ” 3 p .  This is in accord with the idea 
that, to one loop, there should be no contribution to 772 from the bulk region p ” - p ’ ,  
and we are dealing with an edge renormalisation effect. One can check that no 
logarithm comes from the regions p ” < p  or p ” > p ’ .  Also, if we had kept terms 
proportional to sin n’A0’ with n ’ >  1, the integral would be proportional to 

dp” p”-’I,,tA (kp”)KA ( k p ” ) ,  and so would once again generate no logarithm. 
We conclude that 

gl - -(N + 2)uo(2/a)f(A, 4) sin A0 sin A@’ 

x (1/2h)ZA(kp)KA(kp’)[-ln(kp) +finite terms as p + 01. (3.12) 

Putting this together with go, and evaluating G(r ,  r ’ )  asp  + 0 by rescaling Ikl as in (2.7), 
r - d t 2  oc 

sinAt9 sin x ~ - ~  dx(xp/p’)’KA(x) 2 K d - 2 P  G--  
CY 2ryl+A)  

x (1 + [(N .t 2)uof(A, 4)/2A] ln(xp/p’) .t . . .}. (3.13) 

With uo  equal to its fixed point value, assuming exponentiation of the logarithm in 
(3.13), we find G a p ’ - d + 2 ( p / p r ) v 2 ,  with 

E (5A + 1)(N + 2) = A -  8.rr2f(A, 4)(N + 2 ) ~  
2A ( N  + 8) 1 2 ~  (N + 8) ‘ 

7 2 = A  + (3.14) 

Note that this agrees with the O ( E )  value for q L  found by Lubensky and Rubin 
(1975a), when A = 1 (a = T ) .  The O ( E )  term in q2 also grows linearly with A as A +CO. 

From (3.13) the amplitude is now proportional to jr A ( x )  dx, and this is only 
convergent for 

d - 2  + 7 7 2 > A .  (3.15) 

At fixed small E this inequality is violated for sufficiently large A .  Using (3.14), the 
amplitude will diverge for 

(3.16) 

which corresponds to a = 12” for N = 1, d = 3. Without taking our calculation to 
higher orders, it is not clear whether this signals new behaviour, or is an artifact of 
the E expansion. 

a / ~  < 5(N + 2 ) ~ / 2 4 ( N  + 8) + O(E ’) 

4. Renormalisation of edge operators and scaling laws 

Within the context of a field theoretical RG calculation, the appearance of new 
exponents should be connected with the appearance of new ultraviolet divergences 
in quantities evaluated near the edge. In this section we make this explicit. A similar 
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argument for the surface case has been given by Diehl and Dietrich (1981) (see also 
Symanzik (1981)). 

Consider a magnetic field coupling to spins close to the edge. This field is localised 
over a distance much smaller than the bulk correlation length. For general values of 
c in (2.1) the magnetisation close to the edge will have the expansion 

d - 2  

cp(z, p, e)  = I s e i k . '  f I,,(kp)[A'"'(k) sin nhe +B'"'(k) cos nhe] 
n = O  

(4.1) 

and the edge magnetic field will couple to all terms in this sum. For finite c the 
dominant term as p + 0 is that proportional to B"'(k). However, at the fixed point, 
the condition c + CO forces all the B'") to vanish, so the leading term is A"'. Reverting 
to position space, we therefore define the edge operators 

A'"'(z) = lim - 2pinA Ioa dB cp (2,  p,  e)  sin nhe. 
P - r O  

(4.2) 

A'") has canonical dimension d/2 - 1 + nA. The most relevant operator will therefore 
be A"' (Amit 1978), which may also be written 

(4.3) 

For A = 1, A'" coincides with the surface normal derivative operator considered by 
Diehl and Dietrich (1981). 

In the infinite system, the theory at criticality is rendered finite by two renormalisa- 
tion constants 

cp = z : ' z q R  (4.4) 

g = K 'ZuUo (4.5) 

where g is the dimensionless renormalised coupling constant, and K is an arbitrary 
momentum scale. The renormalised Green functions 

are then finite when expressed in terms of g. 
If we do not add edge or surface magnetic fields, the same renormalisation will 

render G"IR finite in the wedge geometry also. This is because any potential new 
divergences from integrations near the boundary are suppressed because cp = 0 there. 

To discuss T # T,, we add a term t jv 'p(r)2  ddr to the Hamiltonian, and expand 
G"' in powers of t. This amounts to considering the G"' with an arbitrary number 
M of insertions of 'p (r ) ' ,  denoted by G"sM'. This is rendered finite by introducing 
one more renormalisation constant Z,. so that 

(4.7) G(N,M)R - - z;N/~@G(N,M) 

is finite. From the arbitrariness in the scale K ,  G",M'R satisfies the RG equation (Amit 
1978) 

(4.8) [ K  a / a K  +p(g)  a/ag+~N77(g)+M(2-V-1(g))]G",M'R- - 0  
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(4.9) 
(4.10) 

(4.11) 

all derivatives being taken at fixed bare coupling. At the fixed point g = g*, for t # 0, 

(4.12) 

where q, Y now refer to fixed point values. G"' has canonical dimension $V(d - 2), 
so that 

(4.13) 

where we have used the fact that the canonical dimension of t is 2. Subtracting (4.13) 
from (4.12) 

(4.14) 

All this is as in the infinite system. In the wedge geometry, however, we can conclude 
from (4.14) only that 

[ K  a / a K  + &-, + (2 - v-')t  a / a t ] ~ " ) ~ ( t )  = o 

[-I a l a 1  + K a / a K  + 2t a l a r  - iN(d - 2)]G(N)(lri, t )  = o 

[I a/ar+&(d - 2 + ~ ) - ~ - ' t  a/at]G"'R(Iri, t )  =o.  

where 5cc-" and V is a scaling function whose behaviour, as p / p ' +  0, for example, 
is so far undetermined. 

In order to complete the analysis we must therefore understand the renormalisation 
of edge operators. Following Diehl and Dietrich (1981), we add a term 

h2 dd-'.z A"'(2) (4.16) 

to the Hamiltonian. We consider Green functions GiNSMsL' with M (p2 insertions and 
L insertions of A"'. This, we assume, will be rendered finite by introducing a new 
edge renormalisation constant Zz, so that 

I 

(4.17) G",M,L)R = Z;N/2Zy2z4G".M.L) 

This will satisfy 

[ K  a / a K  +P(g)a/ag+iNq(g)+M(2-v-'(g))+L(d/2-1-~ - ~ ~ ( g ) ) ] G ' ~ , ~ , ~ ) ~ = o  
(4.18) 

where 

d/2 - 1 - A  - yz(g) = -K a In Z z / a K .  (4.19) 
Note that d/2 - 1 - A  is the canonical dimension of hZ. For r and h Z  non-zero, we 
then have, in analogy with (4.12), 

[ K  a/aK++Nq+L(d/2-1-~ -yZ)+(2-v-l)ta/at 

( t ,  h2) = 0 (4.20) 

at the fixed point. Now G"90sL' has canonical dimension $(N +L)(d - 2) +LA. Thus, 

(N,O.L)R +(d/2-l-A - ~ 2 ) h z  a/ahZ]G 
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in analogy with (4.14) 

[Za/aZ+$N(d - 2 + ~ ) + L ( d  -2-y2)-v-'t a l a t  - y 2 h 2 a / a h 2 ]  
(hi, t ,  h2)  = 0. G(N,O.L)R (4.21) 

This equation is sufficient to determine all the exponents and the scaling laws 
between them, First, take t = hZ = 0. The correlation function of two edge operators 

( ~ ( l ) ( ~ ) ~ ( l ) ( ~ ' ) ) ~ a  I z  - Z ' I - ( d - 2 + ' ' ~ , ~ )  (4.22) 
is G (030.2) 

where 

r/2,2=d - 2 - 2 ~ 2 .  (4.23) 

The correlation function G"so*" of an edge operator with the bulk is 

(A")(z)cp(z, p, e ) ) a p " d - 2 + " 2 )  (4.24) 

where 

qZ=$(d-2)+$17 - y z .  (4.25) 

In order to compute correlations with surface spins, we may introduce a surface 
operator A, (Diehl and Dietrich 1981), and a corresponding index y 1  (which equals 
y2+ 1, for A = 1). Then, for the correlation function of an edge operator with a surface 
operator, 

(4.26) (A"'(Z ) A ~  (2, p, o)), a p - ( d - 2 + v 1 , 2 )  

where 

(4.27) 

Note that the scaling relations (2.11) are automatically satisfied. The scaling part of 
the edge free energy will satisfy (4.20) with N = L = 0. Since the edge free energy 
per unit length fe has dimension d - 2, the scaling part will satisfy 

where we have included the dependence on the bulk and surface magnetic fields, h 
and hl respectively. From this expression the exponents governing all possible mag- 
netisations and susceptibilities may be read off. In particular, we note the edge 
magnetisation a fe /dh2K( - r )P2  with D 2  = v(d - 2 - y 2 ) ,  the edge susceptibility 
a2fe/ah2 ah a with y 2  = v ( y o  + y 2  - d  + 2 ) ,  and the local susceptibility a2fe/a2h2 cc 
ltl-Y2.2 where ~ 2 , ~  = v(2y2 - d + 2) .  The edge free energy has a singularity lt12-"e with 
a, = a + 2v. By eliminating the eigenvalues yi, many scaling relations may be derived. 

The mean field results for the correlation exponents qp.s and the susceptibility 
exponents yp,q are consistent with yo, y l ,  y 2  taking their values at the Gaussian fixed 
point, namely 

yo=d/2+1 y 1 =  d/2- 1 y2= d/2- 1 -  A .  (4.31) 
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It remains to show how to compute the eigenvalue y 2  for d =4-e ,  using its 
definition (4.19). The renormalisation constant Z 2  may be determined in the minimal 
subtraction scheme by demanding that it cancel the poles in e of any one of the 
G"3M*L'. Rather than repeating the calculation of 8 3, we shall instead consider G'o.032', 
and in particular its Fourier transform 

From (2.5), the zero-loop contribution to g(k)  is 

(4.32) 

(4.33) 

This integral is ultraviolet divergent. If we impose a cut-off p < A, the A-dependent 
terms correspond to short-distance singularities of (A( l ) (~)A( l ) (0) ) ,  which must be 
subtracted off, but in any case do not contribute to the I Z ~ + O O  behaviour. (An 
analogous situation arises for correlations of composite operators (Amit 1978).) The 
remaining finite term may be obtained by evaluating (4.33) for A < 0 and analytically 
continuing: 

gO(kYub = -(2/a)r1k12A/22A+1r(i  sin TA. 

The one-loop term is, from (2.6), 

The 8 and k '  integrations proceed as in 8 3. The result is 

(4.34) 

(4.35) 

(4. 

The remaining integral gives (Gradshteyn and Ryzhik 1980) 

21-dlkjd-4r(2 - d/2)'r(2 - d/2 +A)r (2  -d/2 -A)/r(4 -d). (4.37) 

The poles at d = 4 - 2A, 2 - 2A, . . . correspond once again to short-distance singularities 
which must be subtracted before multiplicative renormalisation. We are interested 
in the pole at d = 4: 

(N + 2)u0(2/a)rf(A, 4)k2*-' 1 gl(k)sub = - 
22A+1r(1 +A)2A sin T A  E * 

(4.38) 

Combining (4.34) and (4.38), 

The renormalisation constant Z 2  is chosen, in minimal subtraction, so that Z;g(k)Sub 
should have no pole as E + 0. Thus we take 

z2= l+[(N+2)uof(A,4)/2h]K-'/& +. . . (4.40) 
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where K is an arbitrary momentum scale. From (4.19) this leads to 

d/2-1-A -yZ(g)=[(N+2)f(A, 4)/2A]g+. . . (4.41) 

(4.42) 

at the fixed point. Using the scaling relation (4.25), this agrees with the result obtained 
for q2  in 5 3. 

= - ( 5 A 2 +  1)(N + 2 ) ~ / 1 2 A ( N  + 8 )  + O ( E ~ )  

5. Summary and further remarks 

Our main results are as follows. The singular part of the edge free energy per unit 
length scales according to 

where t is the reduced temperature and h, h l ,  h 2  are respectively bulk, surface and 
edge magnetic fields. The eigenvalues y o  and y l  are those previously studied in bulk 
and surface phenomena, and y2  is a new exponent, given by 

~ 2 = d / 2  - 1 - A  + ( 5 A 2 +  1)(N +2)~ /12A ( N  +8) + O ( c 2 )  (5.2) 

where A =T/CY.  The spin correlations between spins in the bulk ( p  = 0), near the 
surface ( p  = l ) ,  and near the edge ( p  =2) ,  decay at criticality proportional to 
r , where - ( d - 2 + q p , q )  

~ i , i  = 7711 = d -2yi 

772.2 = d - 2-  2 ~ 2 .  

( 5 . 5 )  

(5.6) 
Magnetisation and susceptibility exponents follow from (5.1). 

The main feature of our results is the dependence of the edge exponents on the 
angle a. In fact, they may depend on other features, such as the spatial anisotropy 
in the bulk. Our calculations so far have treated isotropic systems. If bulk correlations 
are anisotropic, it is necessary to rescale lengths anisotropically to bring the problem 
into an isotropic form. This will have the effect of changing a to an effective value 
dependent on the anisotropy. There will be no change if (Y = T (surface case), or if 
a = ~ / 2  and the edge is formed by the intersection of planes of mirror symmetry. 
This is illustrated in figure 2. 

Figure 2. Anisotropy of bulk correlations is removed by a rescaling which changes a to 
al. 
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The edge exponent p2 could in principle be measured in a scattering experiment 
with momentum transfer parallel to the edge. Another possible application is to the 
statistics of self-avoiding walks in a wedge-shaped geometry, which corresponds to 
the limit N + 0 of our results. Series calculations for the surface case have already 
been carried out for this problem (Barber et af 1978). It appears feasible to extend 
our calculations to O(E ’). The N + 00 limit, which is tractable for the surface problem 
(Bray and Moore 1977), appears to present more difficulties. We are at present 
carrying out real space RG calculations to test the qualitative features of our conclusions 
in lower dimensions. 

In this paper we have considered what may be termed the ordinary edge transition, 
caused by the bulk going critical. We expect different edge behaviour at the surface 
transition, the extraordinary transition, and the special transition, which can occur for 
d = 3, N = 1. For d 24 further transitions are conceivable where the edge orders 
before the surface or the bulk, but they will presumably not occur in d = 3 when the 
edge is one dimensional. 
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